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Abstract – This paper presents new methods for fusion of the visual and thermal images for pattern recognition. 

Researchers have suggested different fusion schemes to find out pattern vectors for object detection and 

recognition. The different fusion schemes are — data fusion, decision fusion etc. These schemes have been 

proposed in different way to improve the performance. Hence, here we propose three new methods for fusing the 

visual and infrared (IR) images. The proposed new methods are – fusion using information content from Gray 

Level Co-occurrence Matrix (GLCM), fusion using wavelet energy signature and fusion by maximizing wavelet 

energy signature using E. coli bacteria foraging strategy (EBFS). In the third method, we consider information 

fusion as an optimization problem and then solve it using EBFS as a search algorithm. Finally, we compare the 

results using the contrast signature from GLCM and observed that the later scheme using EBFS shows better 

results than other two methods. 

 

Keywords – Pattern recognition, Evolutionary computation, Bacteria foraging, Wavelet theory. 

 

 

1 Introduction 
Despite of significant research in the field of object 

recognition, there is a practical challenge due to 

different lightening conditions. In the case of poor 

lightening condition, many algorithms fail to detect the 

object correctly. Let us take an example of face 

recognition, where different face recognition 

algorithms show better recognition rate under good 

lightening conditions. But, when the image poses bad 

lightening condition, the algorithm fails [1]. This led 

to the development of thermal infrared image based 

recognition schemes [2]. Using thermal infrared (IR) 

images for pattern recognition, one can improve the 

recognition accuracy [3]. This, in turn, warrants us to 

develop new efficient techniques for information 

fusion. The fused images, thus, formed can be used by 

standard face recognition algorithms for better 

recognition.  

 Thermal IR spectrum comprising of mid-wave IR 

( mµ 53− ) and long-wave IR ( mµ 128 − ) bands 

have been suggested as an alternative source of 

information for detection and recognition of faces. 

Generally, the Thermal IR sensors measure heat 

energy emitted (not reflected) from the objects. So, 

this property of the Thermal IR sensor can be used to 

take image at low illumination conditions or even in 

the total darkness, where visual recognition techniques 

fail. As in the case of face recognition, the thermal IR 

captures the heat generated by the blood vessels in 

face. It may be noted that every human being has 

different signature. So this can be used as a feature for 

classification of the face image. 

 Recently, Passino [4] has reported a new 

distributed optimization technique known as E. coli 

bacteria foraging strategy (EBFS) for solving non-

gradient optimization problems. In his paper [4], the 

author has explained the biology and physics 

underlying the foraging behavior of E. coli bacteria 

that are present in human intestines. In addition to 

foraging behavior, these bacteria also exhibit other 

behaviors like aerotaxis, thermotaxis and phototaxis. It 

is interesting to note here that Chemotaxis is a 

foraging behavior of these bacteria, which can be used 

to solve non-gradient optimization problems. This kind 

of foraging behavior of bacteria can be easily 
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simulated by a digital computer. Note that a 

chemotactic step may be a tumble followed by a run or 

else a tumble followed by another tumble. This 

enables a cell to move in a right direction of 

increasingly nutrient gradient given a patch area of 

nutrients. Swarming is also a bacterial foraging 

strategy where cell released attractants is used for 

signaling other cells so that they swarm together. 

Other important steps involved in bacterial foraging 

strategy are – reproduction, elimination and dispersal. 

In the reproduction step, the least healthy bacteria die 

because they could not get much nutrient during their 

lifetime of foraging. But, the healthiest bacteria each 

split into two bacteria and are stored in the same 

location. The elimination and dispersal step should 

immediately follow a reproduction step. In an 

elimination-dispersal step, any bacteria can be 

eliminated from the population by dispersing it to a 

random location. Usually the frequency of chemotactic 

steps is greater than the frequency of reproduction 

steps.  

 This EBFS is a kind of evolutionary computation 

(EC) method and can be used to solve different non-

gradient optimization problems. In this paper, we have 

been motivated to use the EBFS for finding the 

optimal wavelet coefficients for maximizing the 

energy of the fused images.  

 In this paper, we propose three fusion schemes for 

fusion of visual and thermal images using the spatial 

information possess by the original image to generate 

the fused image. First, we propose a method based on 

the information content using the co-occurrence matrix 

signature. Second, we present a method using the 

energy signature obtained from 2-D wavelet 

transformed images. The motivation is due to the 

given fact that the energy content of the wavelet 

coefficients gives better means of texture 

classification. Third, we propose a method using 

bacteria foraging strategy algorithm to maximize the 

energy of fused approximation coefficients derived 

from the wavelet transformed images. Finally, we 

compare the results using a gold standard, i.e. contrast 

and inverse different moment (IDM) of co-occurrence 

signature of the fused image. Third method being an 

optimization scheme gives better fused image 

compared to the other two given methods. All three 

proposed methods require some information from 

GLCM or wavelet decomposition, so the name 

suggested as Information Fusion. 

      The organization of the paper is as follows : 

Section 2 is the preliminary section, where GLCM, 

Wavelet theory and EBFS are introduced. The EBFS 

algorithm has also been presented in Section 2. Section 

3 deals with three new proposed schemes for 

information fusion. Experimental results are produced 

in Section 4. Concluding remarks are given in Section 

5.  

 

2 Preliminaries 
2.1. Gray Level Co-occurrence matrices 

The Co-occurrence matrix introduced by Haralick et 

al. [5], originally called gray-tone spatial dependency 

matrices, define textural properties of images. The co-

occurrence matrix (also known as Gray Level Co-

occurrence Matrix (GLCM)) is a directional histogram 

constructed by counting the occurrence of pairs of 

pixels separated by some vector displacements. 

 Let I be an image whose pixel grey levels are in 

the range 0, 1, . . ., L-1. Let us take an integer valued 

displacement vector ),( qpd = , which specifies the 

relative position of the pixels at coordinates ),( yx  

and ( )qypx ++ , . A GLCM is a LL×   matrix whose 

( )ji,  element is the number of pairs of pixels of I in 

relative position d  such that the first pixel has gray 
level i and the second pixel has gray level j. So the 

GLCM matrix Μ  involves counts of pairs of 

neighboring pixels. Then Μ  is formed for each of 

four quantized directions 0, 45, 90, and 135 degrees. 

So GLCM matrix can be represented as ( )qp,Μ  or 

( )θ,dΜ , where d  refers to displacement distance and 

θ refers to a particular angle. There are simple 

relationships existing among certain pairs of the 

estimated GLCM ( )θ,dΜ . Let ( )θ,d
TΜ  denote the 

transpose of matrix ( )θ,dΜ . 

Then ( ) ( )00 180,0, dd TΜ=Μ  ; 

( ) ( )00 225,45, dd TΜ=Μ  ; 

( ) ( )00
270,90, dd

TΜ=Μ  ; and 

( ) ( )00 315,135, dd TΜ=Μ . Thus, the knowledge of 

( )0180,dΜ , ( )0225,dΜ , ( )0270,dΜ , and 

( )0315,dΜ  add nothing to the specification of the 

texture. 

 A number of texture features may be extracted 

from the GLCM [5,6]. Some of the important texture 

features computed from the GLCM are: 

• Angular Second Moment (ASM): 
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 ASM is a measure of homogeneity of an 

image. For an image, constant gray levels means 

higher ASM. 

• Contrast: 
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 This measure of local intensity variation will 

favor contributions from ),( jiM  away from the 

diagonal, i.e. ji ≠ . 

• Correlation: 

 

( ) ( ) ( )

yx

L

i

L

j

yxjiMji

σσ

µµ

×








×−××

=
∑∑

−

=

−

=

1

0

1

0

,

nCorrelatio

                     (3) 

 This is a measure of gray level linear 

dependence between the pixels at the specified 

positions relative to each other. 

• Variance: 
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 Variance puts relatively high weights on the 

elements that differ from the average value 

of ),( jiM , and treated as a measure of 

heterogeneity. 

• Inverse Different Moment (IDM): 
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 IDM is inversely related to contrast, and also 

known as Local Homogeneity. 

• Entropy: 
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 This is a measure of the randomness of the 

intensity distribution. 

• Information Measure (IM): 
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 This is the measure of information content; 

depend on the upper value of the gray scale value. 
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• means: yx µµµ ,,  

• standard deviations: yx σσ ,  

• entropies: yx HH ,  

 

2.2. Wavelet Theory and Signature  

 Usually, the 2-D discrete wavelet 

transformation is computed by applying different filter 

bank to the image [7]: 

 

( ) [ ][ ] ( )jinyxjin bbLHHbbL ,,
2,11,21 ↓↓−⊗⊗=    (8) 

 

( ) [ ][ ] ( )jinyxjin bbLGHbbD ,,
2,11,211 ↓↓−⊗⊗=   (9) 

 

( ) [ ][ ] ( )jinyxjin bbLHGbbD ,,
2,11,212 ↓↓−⊗⊗=  (10) 

 

( ) [ ][ ] ( )jinyxjin bbLGGbbD ,,
2,11,213 ↓↓−⊗⊗=  (11)  

 

Where ⊗  denotes the convolution operator, 

( )2,11,2 ↓↓  represent subsampling along the rows 

(columns), and ( )xIL =0  is the original image. H is 

the lowpass filter and G is the bandpass filter. nL is 

obtained by lowpass filtering and known as low 

resolution image at scale n. The detail images niD  are 

obtained by bandpass filtering in a specific direction 

and contain the directional information at scale n. The 

original image I is represented by a set of subimages at 

several scales: { }
dinid DL

1....n 3, 2, 1,
, ==  which is a 

multiscale representation of depth d of the image I. 

For the texture classification in Wavelet domain we 

need energy signature as a prime component [8,9] and 

it is given as: 
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• For a subimage nL , containing N coefficients 

is defined as  

 ( )( )∑ ==
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• And for a subimage 
niD  containing N 

coefficients is defined as 
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              (13) 

The wavelet energy signature reflects the distribution 

of energy in frequency axis over scale and along 

different orientations. This is a measure of dispersion 

of the wavelet coefficients. 

 

2.3. E. coli Bacteria Foraging Strategy (EBFS) 

E. coli Bacteria foraging strategy [4] is an optimization 

process, inspired from biological behavior of bacteria. 

Basic idea of foraging reveals the fact that animals 

take actions to maximize the energy obtained per unit 

time spent for foraging. The foraging theory is based 

on search of nutrients in a way that maximizes their 

energy intake E per unit time T spent for foraging, and 

tries to maximize a function like 
T

E
  . Foraging 

involves finding such patches, deciding whether to 

enter a patch and search for food, and whether to 

continue searching for food in the current patch or to 

go and find another patch that hopefully has a higher 

quality and quantity of nutrients than the current patch. 

The bacteria can move in two different ways; it can 

run (swim for a period of time) or it can tumble, and it 

alternates between these two modes in its entire 

lifetime. After a tumble, the cells are generally pointed 

in random direction, but slightly bias towards the 

previous traveling zone. A bacteria comes under three 

different stages in its life time – chemotaxis ; 

reproduction ; and elimination & dispersal event. 

Chemotaxes: The motion patterns that the bacteria 

will generate in the presence of chemical attractants 

and repellents are called chemotaxes. This helps the 

other bacterium to follow the root. Next, suppose that 

the bacterium happens to encounter a nutrient gradient. 

The change in the concentration of the nutrient triggers 

a reaction such that the bacterium will spend more 

time swimming and less time tumbling. As long as it 

travels on a positive concentration gradient, it will tend 

to lengthen the time for swimming, up to a certain 

point. The swimming or tumbling is done by the 

decision-making mechanisms. Here it performs a type 

of sampling, and it remembers the concentration a 

moment ago, compares it with a current one, and 

makes decisions based on the difference. 

 To represent a tumble, a unit length random 

direction, say )( jφ , is generated; this will be used to 

define the direction of movement after a tumble. In 

particular, we let  

 

( ) ( ) ( )jiClkjlkj ii φθθ +=+ ),,(,,1 (14)      

Where ( )lkji ,,θ  represent location of the ith 

bacterium and ( )iC  denote a basic chemotactic step 

size. When there is a cell-to-cell signaling via an 

attractant, bacteria swarm together. And it can be 

methodically treated as combined cell-to-cell attraction 

and repelling effects. That is 

( )( ) ( )( )

( )

( )∑ ∑

∑ ∑

∑

= =

= =

=

















−−+

















−−−=

=

S

i

p

m

i

mmrepellentrepellent

S

i

p

m

i

mmattractattract

S

i

ii

cccc

wh

wd

lkjJlkjPJ

1 1

2

1 1

2

1

exp                            

exp                          

,,,,,,

θθ

θθ

θθθ

               (15)    

 where S is the total number of bacterium, p is the 

number of parameters to be optimized, J is the cost 

function and dattract, wattract, hrepellent, wrepellent are 

different coefficients that are properly chosen. 

 

Reproduction: After some chemotaxis steps it 

compares all the nutrient concentration where bacteria 

are present. Where ever it finds the higher nutrient 

concentration, at that place each bacterium reproduces 

an exact copy of its own. With low nutrient 

concentration, the bacterium should die. 

 

Elimination & Dispersal: This is another important 

event, assist to chemotaxis step. It keeps track on the 

bacteria and see whether they are appropriately placed 

or not. If not then it places a bacterium in an arbitrary 

food space for new beginning of search. From a broad 

prospective, elimination and dispersal are parts of the 

population-level long-distance motile behavior. 
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2.4. EBFS Algorithm 

1. Initialization 

o Chose S number of bacteria for the 

chemotaxis step as the number of 

population. 

o Then determine the number of 

parameters to be optimized p. 

o Then determine the number of 

chemotaxis steps cN , number of 

reproduction steps, reN  and the 

number of elimination & dispersal 

steps as edN . 

o Then determine the maximum length 

of swimming of a bacterium while hill 

climbing as sN . 

o  Also determine the chemotactic step 

size for swimming )(iC  as 

Si ,....,2,1= . 

o Then choose the dattract, wattract, hrepellent, 

wrepellent parameters that helps in 

swarming with appropriate value. 

o Initial value of Sii ,....,2,1, =θ must 

be chosen, so that these are randomly 

distributed across the domain of the 

optimization problem. 

o Initially 0=== lkj , where 

lkj ,, parameter determine how many 

steps it already moves in chemotaxis, 

reproduction and elimination & 

dispersal event. 

o Define elimination and dispersal 

probability
edp . 

For the given algorithm, note the fact that 

updates to the 
iθ automatically results in 

updates to P, where P represent the 

position of each member in the population 

of the S bacteria at the respective step. 

2. Iterative algorithm 

A. Elimination-dispersal loop: 1+= ll  

B. Reproduction loop: 1+= kk  

C. Chemotaxis loop: 1+= jj  

a. For Si ,...2,1= , take a chemotactic 

step for bacterium i as follows. 

b. Compute ( )lkjiJ ,,, . Let 

( ) ( ) ( )( )lkjPlkjJlkjiJlkjiJ i

cc ,,,,,),,,(,,, θ+=

(i.e., add on the cell-to-cell 

attractant effect to the nutrient 

concentration). 

c. Save the value ),,,( lkjiJ as lastJ  

for the next step, to get a better cost 

via a run. 

d. Tumble: Generate a random 

vector ( ) pi ℜ∈∆ with each 

element ( ) pmim ,...2,1, =∆ , a 

random number on [-1, 1]. 

e. Move: Let 

( ) ( ) ( )
( ) ( )ii

i
iClkjlkj ii

∆∆

∆
+=+

Τ
),,(,,1 θθ

. This results in a step of size )(iC  

in the direction of the tumble for 

bacterium i. 

f. Compute
( ) ( ) ( ) ( )( )lkjPlkjJlkjiJlkjiJ i

cc ,,1,,,1,,,,,1, +++=+ θ

. 

g. Swim: 

i. Let 0=m , as a counter for 

swim length. 

ii. While sNm <  

• Let 1+= mm  

• If ( ) lastJlkjiJ <+ ..1, (if 

doing better), then 

( )lkjiJJ last ,,1, +=  and let  

( ) ( ) ( )
( ) ( )ii

i
iClkjlkj ii

∆∆

∆
++=+

Τ
)(,,1,,1 θθ

and use this ( )lkji ,,1+θ  to 

compute the new ( )lkjiJ ,,1, +  as 

f. 

• Else, let sNm =  End of the  

while loop. 

h. Move to the next 

bacterium )1( +i if Si ≠ , to 

step b. till Si == . 

D. Verify the cNj < , if yes then go to C. 

E. Reproduction: 

a. For the given k and l, and 

each Si ,...2,1= , let 

( )∑
+

=

=
1

1

,,,
cN

j

i

health lkjiJJ  be the 

health of bacterium i . Sort 

bacteria and chemotactic 
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parameters )(iC in ascending 

order of the cost healthJ (higher 

cost means lower health). 

b. The 
2

S
S r = bacteria with higher 

cost will die and other rS  with 

best value split, that means the 

exact replica of the lower cost will 

be generated and placed in the 

same location as their parents. 

F. If reNk < , go to step B. 

G. Elimination-dispersal: For Si ,...2,1= , 

with probability ped, eliminate and 

disperse each bacterium by keeping 

the population constant. This can be 

achieved by randomly placing the 

bacterium in the search space. 

H. If edNl < , then go to step A; 

otherwise end. 

   

3  Information Fusion 
In biometrics we have to find the particular pattern and 

recognize it against many more available patterns. 

Recently, researchers have shown more interest to 

develop some schemes for information fusion. 

Examples include – face and fingerprint [10, 11], 

fusion of face and hand geometry [10], fusion of face 

and speech data [12] etc. The combined use of visual 

and IR image data makes a visible means of improving 

performance in face recognition [2]. It is interesting to 

note here that the face recognition algorithm applied to 

fused images of visual and thermal images 

demonstrate better result than the visual face 

recognition or thermal face recognition alone [13]. In 

[14], it has been shown that the fused image improves 

the recognition performance. In [15], authors have 

demonstrated the data fusion and decision fusion for 

robust face recognition and shown that the recognition 

performance improves significantly. Huang and Jing 

[17] have discussed Multi-focus image fusion using 

pulse coded Neural Networks. Multiscale fusion 

algorithms using Pyramid, DWT and Iterative DWT 

are presented in [18]. This motivates us to make a 

fusion scheme, taking some textural information from 

both images and then fuse it to get a new image, which 

contains information from both images. For this 

reason, we describe information fusion as a method for 

fusing visual and thermal images and make the fused 

image more suitable for recognition.  

 Here we describe three methods of information 

fusion. The first method use information content of 

both images computed from the GLCM matrix. The 

second method is wavelet based, where the energy 

parameter is taken into consideration for fusing two 

images. Authors in [18] have claimed that iterative 

DWT gives better results than pyramidal and DWT 

algorithms.  They have used iterative DWT algorithm 

for optimization. Multi-focus image fusion using 

PCNN has been reported in [19]. Image fusion using 

lifting wavelet transform with human visual features 

has been discussed in [20]. This has motivated us to 

develop an evolutionary computational algorithm for 

optimization of energy content. In this context, we 

propose a third method which is based on EBFS. It 

seems to be a challenging, yet, interesting problem. In 

fact, we do not find any precise mathematical model to 

obtain optimal wavelet coefficients to maximize the 

energy content of the fused image. Hence, we need a 

suitable evolutionary computation (EC) scheme to 

solve this problem.  In this paper, we use bacteria 

foraging strategy for maximizing energy content of the 

fused image, considering the optimal approximation 

coefficients of one level of the wavelet transform. 

 

3.1 Fusion using information content from GLCM   

matrix 

    This scheme can be expressed as a weighted 

sum of pixel intensity from both the images:  

  ),(),(),( yxIbyxVayxF ×+×=  (16) 

where ),( yxF  is the fused image formed from visual 

image ),( yxV  and infra red image ),( yxI . The 

parameters ‘a’ and ‘b’ are chosen such that the sum is 

equal to one. The algorithm for determining values for 

‘a’ and ‘b’  is stated below: 

i. Check that the dimension and intensity level of both 

visual and thermal images must be same. 

ii. Calculate the GLCM matrix of both the images. 

iii. Then using the corresponding GLCM matrix calculate 

the Information Measure of both the images using 

Eq.(7) and name it as IM1 (visual) and IM2 (thermal). 

iv. Then, 

  if (IM1>IM2) 

 
21

1

IMIM

IM
a

+
= and

21

2

IMIM

IM
b

+
=  

 else 
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From above discussions, it is seen that always we give 

more importance to the visual image for this scheme. 

In other words, the proposed fusion scheme is more 

biased towards the visual side irrespective of the fact 

that it also contains thermal data. Then, we generate 

the fusion image using the parameters ‘a’ and ‘b’ 

together with  Eq.(16). 

 

3.2 Fusion using Wavelet energy signature 

 As we know from [8], one of the most 

important texture feature using wavelet 

transformation is the energy signature given in 

Eqs.(12,13). Here we employ first level 

decomposition of the image. For our application, 

the equations (8-11) can be rewritten as: 

 

 ( ) [ ][ ] ( )
jiyxji bbLHHbbL ,,

2,11,201 ↓↓
⊗⊗=

      (17) 

 

 ( ) [ ][ ] ( )
jiyxji bbLGHbbD ,,

2,11,2011 ↓↓
⊗⊗=

      (18) 

 

 ( ) [ ][ ] ( )
jiyxji bbLHGbbD ,,

2,11,2012 ↓↓
⊗⊗=

      (19) 

 

 ( ) [ ][ ] ( )jiyxji bbLGGbbD ,,
2,11,2013 ↓↓

⊗⊗=

      (20) 

Here we use the wavelet energy signature given 

in Eq.(12) as the required factor for fusing 

wavelet coefficients obtained from both visual 

and infrared images and are given as: 

 

  
IVF LbLaL 111 ×+×=   (21) 

  
IVF DbDaD 111111 ×+×=  (22) 

  
IVF DbDaD 121212 ×+×=  (23) 

  
IVF DbDaD 131313 ×+×=  (24) 

 

Where the superscripts F, V, I represent the 

fusion, visual and thermal images, respectively. 

And a, b are the parameters determined by using 

energy signature given as below: 

i. Decompose the visual and thermal 

images with 2-D two-scale wavelet 

transform into 4 sub-images (one 

approximation image and other three 

detail images). 

ii. Calculate the energy signature using 

Eq.(12) of all the 4 sub-images of both 

the visual and thermal images as 
y

D

y

D

y

D

y

L 1312111
,,, ξξξξ . Where y can be 

either V or  I . 

iii. Then calculate a and b (note that 

1=+ ba ): 

For
FL1 , I

L

V

L

V

L
a

11

1

ξξ

ξ

+
=  and 

I

L

V

L

I

L
b

11

1

ξξ

ξ

+
=    (25) 

For
FD11 ,   I

D

V

D

V

D
a

1111

11

ξξ

ξ

+
=  and 

I
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Then using the parameters  ‘a’ and ‘b’ and 

Eqs.(21-24),  we get  wavelet coefficients of 

the fused image.  

iv. Then using the inverse wavelet transform 

we get  the fused image. 

 

3.3 Fusion by maximizing Wavelet energy signature 

using EBFS 

 

From the above discussion, we know that the energy is 

a prime factor for texture classification in the wavelet 

domain. Hence, here we again consider the energy as 

our cost function in E. coli Bacteria Foraging Strategy 
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(EBFS). This procedure of fusion deviate much from 

the earlier methods. For the fusion purpose, we have to 

concentrate on the approximation coefficients 

(Eq.(17)) only, not the detail coefficients (Eqs.(18-

20)). For this reason we apply the EBFS optimization 

technique on the approximation coefficients only for a 

better result. In the above procedure (second method 

described in section 3.2) ‘a’ and ‘b’ are computed 

from Eq.(25) and ,thus, are fixed for all the 

approximation coefficients of wavelet transformed 

images. On the other hand, here we propose an 

optimization approach where parameters ‘a’ and ‘b’ 

are independently decided for the approximation 

coefficients. The approximation coefficients of the 

fused image can mathematically be defined as : 

 

 

( ) ( ) ( )

 1),(),( where

  ,,,, 111

=+

×+×=

yxbyxa

LyxbLyxayxL IVF

      (29) 

But, for obtaining the other detail coefficients, 

parameters ‘a’ and ‘b’ are decided as per the 

previous method (second method given in 

section 3.2) by using Eqs.(26-28) and the detail 

coefficients for fused image can be computed by 

using Eq.(22-24). 

The algorithm for computing the optimal 

parameters ‘a’ and ‘b’ for obtaining 

approximation coefficients for the fused image 

from the wavelet coefficients (approximation 

coefficients) of visual and thermal images is 

given below: 

Algorithm 

A. Decompose the given visual and thermal 

images into 2-D wavelet transform 

images to get four sub-images of same 

size (one approximation image and rest 

three detail images). 

B. First take the approximation coefficients 

of the visual and thermal images and 

then do the following steps: 

a) Calculate the dimension of the 

approximation coefficients 

as nmp ×= , where m is the 

number of rows and n is the number 

of columns of the approximation 

coefficients. 

b) Bacteria representation: For EBFS 

optimization process, we have to 

represent the bacterial search 

dimension. Here the search 

dimension is equal to p. This means 

each coefficient represents itself as a 

search parameter. 

c) Cost function: For this problem, the 

cost function is the maximization of 

energy content of the fused 

approximation coefficients. This 

implies that after searching the visual 

and thermal approximation space we 

get the set of 

),( and ),( yxbyxa values, where 

nx ,...,2,1= and my ,....,2,1= . The 

Cost Function can be written as: 

  

( )
( ) ( )( )IV

F

LyxbLyxaenergy

LenergyJ

11max

1max

,, ×+×=

=

,     (30) 

 where the ),( and ),( yxbyxa parameters 

are obtained from the EBFS algorithm. 

d) Then taking bacterial cost function 

representation, use the Bacteria 

Foraging Strategy Algorithm to get 

optimal set of values 

),( and ),( yxbyxa optopt . 

e) Then compute the approximation 

coefficients for the fused image by 

using the Eq.(29). 

C. Then consider the detail coefficients of 

the thermal and visual images: 

a) Determine the a and b parameters using 

Eqs.(26-28). 

b) Then compute the detail coefficients 

for the fused image using Eqs.(22-24). 

D. Then get the fused image out of the 

given visual and thermal images by 

evaluating the inverse Wavelet 

transform. 

 

4  Experiments and Results 

 
In this section, we discuss the images considered for 

the experiments, parameters for EBFS optimization 

technique and different results obtained from proposed 

fusion schemes. Finally, we compare the results using 

a gold standard. 
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Images for experiments 

 We consider some face images from the Equinox 

Database [16], which contain the visual and thermal 

images of a person with many modalities. But, for our 

experiment we only consider the LWIR (long-wave 

IR) images. 

Parameters for EBFS Algorithm 

 As (from previous sections) we know that the 

search space nmp ×=  is too big, we use parameters 

such that it avoids complexity of algorithm to some 

extent. For this reason, we choose S=8, =cN 8, 

=reN 5, =edN 3, =sN 4, =)(iC 0.067, 

=attractd 0.01, =attractw 0.2, =repellenth 0.01, and 

=repellentw 10. However, the above parameters can be 

changed to get better optimization. For example, if we 

increase the cN , we get better optimization. Since the 

search space is too large, we minimize the parameters. 

If we increase the number of bacteria and other steps 

involved, the computational complexity increases. 

Here one can not vary the parameter )(iC , which is 

experimentally determined. 

Results 

The results consist of fusion images, co-occurrence 

matrix images, and performance comparison using 

table format. We compare the quality of fused image 

so formed using the Co-occurrence signature, Contrast 

and Inverse Different Moment (IDM). The contrast 

and IDM are already defined in section 2.1 and are 

given as: 
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The contrast and IDM are inversely proportional to 

each other. When the contrast is more, the image has 

greater information content. 

The original images considered without histogram 

equalization is shown in Figure 1. Fused images 

obtained using proposed techniques are displayed in 

Figure  2. 

 
 

Figure 1: Original images. 

 
Figure 2: Fused images (VI-Visual Image I, VII-Visual Image II, T-Thermal Image). 
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The corresponding co-occurrence matrix images of the 

fused images (shown in Figure 2) are displayed in 

Figure 3.  

 
Figure 3 : The Co-occurrence Matrix Images. 

 

Then a performance evaluation has been carried out 

using contrast and IDM as the gold standards to make 

it more convincing. The results are compared in Table 

1. 

 

Table 1: Performance Comparison of proposed fusion 

schemes. 

 Fusion of Visual 

Image I and 

Thermal Image  

(Contrast, IDM) 

Fusion of Visual 

Image II and 

Thermal Image 

(Contrast, IDM) 

Method 3.1. 108.63, 0.46563 77.722, 0.48502 

Method 3.2. 126.21, 0.4303 96.924, 0.43845 

Method 3.3.  142.81, 0.41591 98.366, 0.43396 

 

   

From Table 1, we can see that fusion based on optimal 

wavelet energy signature using EBFS gives better 

results. Further, the proposed method (Method 3.3) 

gives us good tracking record of energy parameter of 

fusion. This has been shown  in Figure 4.   

 

 
Figure 4: Cost Function of BFS Algorithm. 

 

In the second experiment, we compare the results of 

proposed fusion schemes applied to the histogram 

equalize images. The images after histogram 

equalization are considered for this experiment and are 

shown in Figure 5. 
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Figure 5: (E-Equalize, V-Visual, T-Thermal) 

 

 

Table 2: Comparison of proposed fusion schemes using histogram equalized images. 

 

 Fusion of Equalize 

Visual Image I and 

Equalize Thermal 

Image  (Contrast, 

IDM) 

Fusion of Equalize 

Visual Image II and 

Equalize Thermal 

Image  (Contrast, 

IDM) 

Fusion of Equalize 

Visual Image III and 

Equalize Thermal 

Image  (Contrast, 

IDM) 

Method 3.1. 412.86, 0.28774 287.97, 0.30159 186.3, 0.31952 

Method 3.2. 748.52, 0.2264 479.63, 0.23495 293.54, 0.24186 

Method 3.3.  762.14, 0.18659 498.77, 0.19939 299.79, 0.22311 

 

   

The results are compared in Table 2. From Table 2, it 

is observed that significant improvement can be 

achieved by considering equalized images. So one can 

equalize given visual and IR images before fusion. 

From Table 2, we again see that the proposed EBFS 

method (section 3.3) gives better results than other two 

methods.   

 

 

 5  Conclusions 
In this paper, three new methods have been proposed 

for fusion of the visual and IR images considering the 

advantages and disadvantages of visual and thermal 

images used for pattern recognition. Considering some 

images from the Equinox Database for experiments, 

results are compared. The contrast signature of GLCM 

has been considered given the fact that it gives us 

better means for performance evaluation. It has been 

shown that the fusion by maximizing wavelet energy 

signature using EBFS gives better results compared to 

the other two proposed methods, which is quite 

obvious. But, the EBFS method has some 

disadvantage while considering time as the prime 

factor. One has to choose EBFS parameters 

judiciously in order to reduce computational 

complexity. Finally, we conclude that the proposed 

EBFS method can be used for information fusion for 

different biometrics applications.   
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