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Abstract — This paper presents new methods for fusion of the visual and thermal images for pattern recognition.
Researchers have suggested different fusion schemes to find out pattern vectors for object detection and
recognition. The different fusion schemes are — data fusion, decision fusion etc. These schemes have been
proposed in different way to improve the performance. Hence, here we propose three new methods for fusing the
visual and infrared (IR) images. The proposed new methods are — fusion using information content from Gray
Level Co-occurrence Matrix (GLCM), fusion using wavelet energy signature and fusion by maximizing wavelet
energy signature using E. coli bacteria foraging strategy (EBFS). In the third method, we consider information
fusion as an optimization problem and then solve it using EBFS as a search algorithm. Finally, we compare the
results using the contrast signature from GLCM and observed that the later scheme using EBFS shows better

results than other two methods.
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1 Introduction
Despite of significant research in the field of object
recognition, there is a practical challenge due to
different lightening conditions. In the case of poor
lightening condition, many algorithms fail to detect the
object correctly. Let us take an example of face
recognition, where different face recognition
algorithms show better recognition rate under good
lightening conditions. But, when the image poses bad
lightening condition, the algorithm fails [1]. This led
to the development of thermal infrared image based
recognition schemes [2]. Using thermal infrared (IR)
images for pattern recognition, one can improve the
recognition accuracy [3]. This, in turn, warrants us to
develop new efficient techniques for information
fusion. The fused images, thus, formed can be used by
standard face recognition algorithms for better
recognition.

Thermal IR spectrum comprising of mid-wave IR
(3—5wum) and long-wave IR (8—12 um) bands

have been suggested as an alternative source of
information for detection and recognition of faces.
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Generally, the Thermal IR sensors measure heat
energy emitted (not reflected) from the objects. So,
this property of the Thermal IR sensor can be used to
take image at low illumination conditions or even in
the total darkness, where visual recognition techniques
fail. As in the case of face recognition, the thermal IR
captures the heat generated by the blood vessels in
face. It may be noted that every human being has
different signature. So this can be used as a feature for
classification of the face image.

Recently, Passino [4] has reported a new
distributed optimization technique known as E. coli
bacteria foraging strategy (EBFS) for solving non-
gradient optimization problems. In his paper [4], the
author has explained the biology and physics
underlying the foraging behavior of E. coli bacteria
that are present in human intestines. In addition to
foraging behavior, these bacteria also exhibit other
behaviors like aerotaxis, thermotaxis and phototaxis. It
is interesting to note here that Chemotaxis is a
foraging behavior of these bacteria, which can be used
to solve non-gradient optimization problems. This kind
of foraging behavior of bacteria can be easily
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simulated by a digital computer. Note that a
chemotactic step may be a tumble followed by a run or
else a tumble followed by another tumble. This
enables a cell to move in a right direction of
increasingly nutrient gradient given a patch area of
nutrients. Swarming is also a bacterial foraging
strategy where cell released attractants is used for
signaling other cells so that they swarm together.
Other important steps involved in bacterial foraging
strategy are — reproduction, elimination and dispersal.
In the reproduction step, the least healthy bacteria die
because they could not get much nutrient during their
lifetime of foraging. But, the healthiest bacteria each
split into two bacteria and are stored in the same
location. The elimination and dispersal step should
immediately follow a reproduction step. In an
elimination-dispersal step, any bacteria can be
eliminated from the population by dispersing it to a
random location. Usually the frequency of chemotactic
steps is greater than the frequency of reproduction
steps.

This EBFS is a kind of evolutionary computation
(EC) method and can be used to solve different non-
gradient optimization problems. In this paper, we have
been motivated to use the EBFS for finding the
optimal wavelet coefficients for maximizing the
energy of the fused images.

In this paper, we propose three fusion schemes for
fusion of visual and thermal images using the spatial
information possess by the original image to generate
the fused image. First, we propose a method based on
the information content using the co-occurrence matrix
signature. Second, we present a method using the
energy signature obtained from 2-D wavelet
transformed images. The motivation is due to the
given fact that the energy content of the wavelet
coefficients gives better means of texture
classification. Third, we propose a method using
bacteria foraging strategy algorithm to maximize the
energy of fused approximation coefficients derived
from the wavelet transformed images. Finally, we
compare the results using a gold standard, i.e. contrast
and inverse different moment (IDM) of co-occurrence
signature of the fused image. Third method being an
optimization scheme gives better fused image
compared to the other two given methods. All three
proposed methods require some information from
GLCM or wavelet decomposition, so the name
suggested as Information Fusion.

The organization of the paper is as follows :
Section 2 is the preliminary section, where GLCM,
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Wavelet theory and EBFS are introduced. The EBFS
algorithm has also been presented in Section 2. Section
3 deals with three new proposed schemes for
information fusion. Experimental results are produced
in Section 4. Concluding remarks are given in Section
5.

2 Preliminaries
2.1. Gray Level Co-occurrence matrices
The Co-occurrence matrix introduced by Haralick et
al. [5], originally called gray-tone spatial dependency
matrices, define textural properties of images. The co-
occurrence matrix (also known as Gray Level Co-
occurrence Matrix (GLCM)) is a directional histogram
constructed by counting the occurrence of pairs of
pixels separated by some vector displacements.

Let / be an image whose pixel grey levels are in
the range 0, 1, . . ., L-1. Let us take an integer valued

displacement Vector3=(p,q), which specifies the
relative position of the pixels at coordinates (x,y)
and (x +p,y+ q). A GLCMisa Lx L matrix whose
(l', ]) element is the number of pairs of pixels of / in
relative position d such that the first pixel has gray
level i and the second pixel has gray level j. So the
GLCM matrix M involves counts of pairs of

neighboring pixels. Then M is formed for each of
four quantized directions 0, 45, 90, and 135 degrees.

So GLCM matrix can be represented as M(p,q) or

M(E, 6?), where d refers to displacement distance and

6 refers to a particular angle. There are simple
relationships existing among certain pairs of the

estimated GLCM M(g,é’). Let MT(E,H) denote the
of matrix M(E, 6?).
ThenM(d.0° )= M" (4,180°) :
M(d,45°)= M" (d,225°) :
(d.90°)=M"(a.270°) :

(3,1350)=MT(3,3150). Thus, the knowledge of
(@180°),  Mla.225°),  mld.270°),
M(2,3150) add nothing to the specification of the

texture.

A number of texture features may be extracted
from the GLCM [5,6]. Some of the important texture
features computed from the GLCM are:

Angular Second Moment (ASM):

transpose

M and
M
M

and
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L-1 L-1
.o\ 12
ASM =3 > {M(i. )}
i=0 j=0
ASM is a measure of homogeneity of an
image. For an image, constant gray levels means
higher ASM.
e Contrast:

(1

L L
Contrast = an{ZZM(i,j)}, i—jl=n
n=0 i=1 j=1
2
This measure of local intensity variation will
favor contributions from M (i, j) away from the
diagonal,i.e. i # j.

e (Correlation:

3)

This is a measure of gray level linear
dependence between the pixels at the specified
positions relative to each other.

e Variance:

L-1 L-1
Veriance = Z Z(z -

i=0 j=0

L-1 L-

le]xM

j=0

i=0

Correlation =

A=, )}

o, )

M@G,j) @

Variance puts relatively high weights on the
elements that differ from the average value
of M(i,j), and treated as a measure of
heterogeneity.

e Inverse Different Moment (IDM):
L-1 L-1
IDM=>>———M(,j) ()
0 j=0 1 +

IDM is inversely related to contrast, and also
known as Local Homogeneity.
e Entropy:
L-1
Entropy = -

i=0

L-1

M (i, j)logM (i, )= H

Xy

(6)
This is a measure of the randomness of the

intensity distribution.

¢ Information Measure (IM):

1
Hxv _ny

M= maxy|Hx,Hy |

Jj=0

(7
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This is the measure of information content;
depend on the upper value of the gray scale value.
Where

ol =3 S Ml )ioelur (1, (1)
¢ ()= 2 M)
. M, ()=3 M)

i=0
means: 4, {1, [,

standard deviations: o ,o )

entropies: H ,H

2.2. Wavelet Theory and Signature

Usually, the 2-D  discrete  wavelet

transformation is computed by applying different filter
bank to the image [7]:

L, (b,

nl (bl ’b

bj): |-H" ® lHy ®L,, Jiz,l Jil,z (b"’bj) ®)

=, ®lc,®L,.],, LL2 (b,,5,) 9
Dn (z’ j) |_G ®lH ®Ln 1J¢21J¢172(bi’bj)(10)

Dn3 (b[’

Where &  denotes the
J 2,1(~L 1,2) represent subsampling along the rows

bj): |.GX ® le ®Ln*1 J¢,271 Ji«l,Z (bi’bj) (11)

convolution operator,

(columns), and L, =1 (;) is the original image. H is
the lowpass filter and G is the bandpass filter. L, is
obtained by lowpass filtering and known as low
resolution image at scale n. The detail images D,, are
obtained by bandpass filtering in a specific direction

and contain the directional information at scale n. The
original image / is represented by a set of subimages at

{Ld H Dni }[=1, 2,3,n=1...d which

multiscale representation of depth d of the image /.

For the texture classification in Wavelet domain we
need energy signature as a prime component [8,9] and
it is given as:

several scales: 1S a
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For a subimage L, , containing N coefficients
is defined as

I AN

Dm'

E, 1

And for a subimage containing N

coefficients is defined as

E, = iz(z)m. (b,.b, ), n=1,.d,i=123
N4

(13)
The wavelet energy signature reflects the distribution
of energy in frequency axis over scale and along
different orientations. This is a measure of dispersion
of the wavelet coefficients.

2.3. E. coli Bacteria Foraging Strategy (EBFS)

E. coli Bacteria foraging strategy [4] is an optimization
process, inspired from biological behavior of bacteria.
Basic idea of foraging reveals the fact that animals
take actions to maximize the energy obtained per unit
time spent for foraging. The foraging theory is based
on search of nutrients in a way that maximizes their
energy intake E per unit time 7 spent for foraging, and

tries to maximize a function like . Foraging
involves finding such patches, deciding whether to
enter a patch and search for food, and whether to
continue searching for food in the current patch or to
go and find another patch that hopefully has a higher
quality and quantity of nutrients than the current patch.
The bacteria can move in two different ways; it can
run (swim for a period of time) or it can tumble, and it
alternates between these two modes in its entire
lifetime. After a tumble, the cells are generally pointed
in random direction, but slightly bias towards the
previous traveling zone. A bacteria comes under three
different stages in its life time — chemotaxis ;
reproduction ; and elimination & dispersal event.

Chemotaxes: The motion patterns that the bacteria
will generate in the presence of chemical attractants
and repellents are called chemotaxes. This helps the
other bacterium to follow the root. Next, suppose that
the bacterium happens to encounter a nutrient gradient.
The change in the concentration of the nutrient triggers
a reaction such that the bacterium will spend more
time swimming and less time tumbling. As long as it
travels on a positive concentration gradient, it will tend
to lengthen the time for swimming, up to a certain

E-ISSN: 2224-3488

148

Rutuparna Panda, Manoj Kumar Naik

point. The swimming or tumbling is done by the
decision-making mechanisms. Here it performs a type
of sampling, and it remembers the concentration a
moment ago, compares it with a current one, and
makes decisions based on the difference.

To represent a tumble, a unit length random
direction, say @(j), is generated; this will be used to
define the direction of movement after a tumble. In
particular, we let

0'(j+1.k,1)=0"(j.k,D)+ Ci ()14
Where Hi( j,k,l) represent location of the ith

bacterium and C (1) denote a basic chemotactic step
size. When there is a cell-to-cell signaling via an
attractant, bacteria swarm together. And it can be
methodically treated as combined cell-to-cell attraction
and repelling effects. That is

S . .
‘]a‘ (H’P(j7k’l)) = ZJZ‘(H,HI (j,k,l))
i1
S
= Z{ duttract exp (_ Watract

i=1
S
hrepe]lem eXp - Wrepe]lem
=1

P .
>(0,-0, )H
P .
> (6, -6,) H
m=1

15)
where S is the total number of bacterium, p is the
number of parameters to be optimized, J is the cost
function and dattract: Wartracts hrepellent: Wrepellent are
different coefficients that are properly chosen.

2

i

Reproduction: After some chemotaxis steps it
compares all the nutrient concentration where bacteria
are present. Where ever it finds the higher nutrient
concentration, at that place each bacterium reproduces
an exact copy of its own. With low nutrient
concentration, the bacterium should die.

Elimination & Dispersal: This is another important
event, assist to chemotaxis step. It keeps track on the
bacteria and see whether they are appropriately placed
or not. If not then it places a bacterium in an arbitrary
food space for new beginning of search. From a broad
prospective, elimination and dispersal are parts of the
population-level long-distance motile behavior.
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2.4. EBFS Algorithm
1. Initialization

O

Chose S number of bacteria for the
chemotaxis step as the number of
population.

Then determine the number of
parameters to be optimized p.

Then determine the number of

number of

and the
number of elimination & dispersal
stepsas N, .

chemotaxis steps N_,

reproduction steps, N,

Then determine the maximum length
of swimming of a bacterium while hill

climbingas V.

Also determine the chemotactic step
size¢  for  swimming C(7) as
i=12,..,S.

Then ChOOSC the dattracta Wattracts hrepellenls
Wiepellens Parameters that helps in
swarming with appropriate value.

Initial value of @',i=12,....,.S must

be chosen, so that these are randomly
distributed across the domain of the
optimization problem.
Initially j =k =1=0,
J,k,l parameter determine how many

where

steps it already moves in chemotaxis,
reproduction and elimination &
dispersal event.

Define elimination

probability p_, .

and dispersal

For the given algorithm, note the fact that

updates to the @' automatically results in
updates to P, where P represent the
position of each member in the population
of the S bacteria at the respective step.

2. [Iterative algorithm

A.
B.
C.

Elimination-dispersal loop:/ =1 +1

Reproduction loop: k = k +1

Chemotaxis loop: j = j+1

a. Fori=1,2,...§5, take a chemotactic
step for bacterium i as follows.

b. Compute J(i, j,k,l). Let
I ok, 1) = J G, ok, + T, (07 (o k1), P(j 1))
(i.e., add on the cell-to-cell
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attractant effect to the nutrient
concentration).

last
for the next step, to get a better cost
via a run.

Tumble: Generate a random

vector A(i ) € R” with each

elementA | (l'),m =12,...p, a

random number on [-1, 1].

Move: Let

90+Lh0:90¢n+0@—iﬁl—
AT(0)AG)

. This results in a step of size C(7)
in the direction of the tumble for
bacterium i.

Compute
I, j+ 1k 0) = I, e )+, (07 (j+1,k,1) P(j+1,k,1))

Swim:

i. Letm=0, as a counter for
swim length.
ii. While m <N,
* Let m=m+1
o If  J(,j+Lkl)<J,,Gf
doing better), then
Ty = i j +1,k,1) and let

o i A6
6’(]+1,k,l)—9(]+1,k,l)+C(z)m
and use this Qi(j+1,k,l) to
compute the new J(i,j+1,k,l) as
/-

. Else, letm = N, End of the

while loop.
h. Move to the next
bacterium (i +1) ifi # .S, to
stepb. tilli == § .

D. Verify the j < N_, if yes then go to C.
E. Reproduction:

a.

For the given k& and /, and
eachi =1,2,...5, let
N, +1

Jlilealth = ZJ(Z: j) kal) be the
=1

health of bacteriumi. Sort
bacteria and chemotactic
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parameters C (i) in ascending

order of the cost J,,,, (higher
cost means lower health).

The S, =§bacteria with higher

cost will die and otherS, with

best value split, that means the
exact replica of the lower cost will
be generated and placed in the
same location as their parents.

F. Ifk<N,,, gotostep B.

G. Elimination-dispersal: Fori =1,2,...5,
with probability p., eliminate and
disperse each bacterium by keeping
the population constant. This can be

achieved by randomly placing the
bacterium in the search space.

H. If/<N,, then go step A

otherwise end.

to

3 Information Fusion

In biometrics we have to find the particular pattern and
recognize it against many more available patterns.
Recently, researchers have shown more interest to
develop some schemes for information fusion.
Examples include — face and fingerprint [10, 11],
fusion of face and hand geometry [10], fusion of face
and speech data [12] etc. The combined use of visual
and IR image data makes a visible means of improving
performance in face recognition [2]. It is interesting to
note here that the face recognition algorithm applied to
fused images of visual and thermal images
demonstrate better result than the visual face
recognition or thermal face recognition alone [13]. In
[14], it has been shown that the fused image improves
the recognition performance. In [15], authors have
demonstrated the data fusion and decision fusion for
robust face recognition and shown that the recognitioh
performance improves significantly. Huang and Jing
[17] have discussed Multi-focus image fusion using
pulse coded Neural Networks. Multiscale fusion
algorithms using Pyramid, DWT and Iterative DWT
are presented in [18]. This motivates us to make a
fusion scheme, taking some textural information from
both images and then fuse it to get a new image, which
contains information from both images. For this
reason, we describe information fusion as a method for
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fusing visual and thermal images and make the fused
image more suitable for recognition.

Here we describe three methods of information
fusion. The first method use information content of
both images computed from the GLCM matrix. The
second method is wavelet based, where the energy
parameter is taken into consideration for fusing two
images. Authors in [18] have claimed that iterative
DWT gives better results than pyramidal and DWT
algorithms. They have used iterative DWT algorithm
for optimization. Multi-focus image fusion using
PCNN has been reported in [19]. Image fusion using
lifting wavelet transform with human visual features
has been discussed in [20]. This has motivated us to
develop an evolutionary computational algorithm for
optimization of energy content. In this context, we
propose a third method which is based on EBFS. It
seems to be a challenging, yet, interesting problem. In
fact, we do not find any precise mathematical model to
obtain optimal wavelet coefficients to maximize the
energy content of the fused image. Hence, we need a
suitable evolutionary computation (EC) scheme to
solve this problem. In this paper, we use bacteria
foraging strategy for maximizing energy content of the
fused image, considering the optimal approximation
coefficients of one level of the wavelet transform.

3.1 Fusion using information content from GLCM
matrix
This scheme can be expressed as a weighted
sum of pixel intensity from both the images:
F(x,y)=axV(x,y)+bxI(x,y)  (16)
where F'(x,y) is the fused image formed from visual
image V(x,y) and infra red image/(x,y). The

parameters ‘a’ and ‘b’ are chosen such that the sum is
equal to one. The algorithm for determining values for
‘a’and ‘b’ is stated below:

Check that the dimension and intensity level of both
visual and thermal images must be same.

Calculate the GLCM matrix of both the images.

Then using the corresponding GLCM matrix calculate
the Information Measure of both the images using
Eq.(7) and name it as /M1 (visual) and /M2 (thermal).
Then,

if IM1>IM2)

a= __ M1 andp = w2
IM1+IM?2 IM1+IM?2

else
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IM?2 IM1
=— "~ and hb=—""-———
IM1+IM?2 IM1+IM?2

From above discussions, it is seen that always we give
more importance to the visual image for this scheme.
In other words, the proposed fusion scheme is more
biased towards the visual side irrespective of the fact
that it also contains thermal data. Then, we generate
the fusion image using the parameters ‘e’ and ‘b’
together with Eq.(16).

3.2 Fusion using Wavelet energy signature

As we know from [8], one of the most
important texture feature using wavelet
transformation is the energy signature given in
Egs.(12,13). Here we employ first level
decomposition of the image. For our application,
the equations (8-11) can be rewritten as:

Lb.b,)=|H, ®lH, 8L, | (.5)

(17)
Dulbb))=lt, ©lG, @1, |, b5
(18)
Dylb.b))=l6. ®lH, L], | (b.5)
(19)

Dylb.b,)=lG, ®lG, ®L, ], Ll,z(bi,bj)

(20)
Here we use the wavelet energy signature given
in Eq.(12) as the required factor for fusing
wavelet coefficients obtained from both visual
and infrared images and are given as:

szaxLll/+b><Lf 2D
D/ =axD/ +bxD| (22)
DS =a><D1V2 +b><D1[2 (23)
Dli :ang +bXD1[3 (24)

Where the superscripts F, V, [ represent the
fusion, visual and thermal images, respectively.

And a, b are the parameters determined by using
energy signature given as below:
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. Decompose the visual and thermal
images with 2-D two-scale wavelet
transform into 4 sub-images (one
approximation image and other three
detail images).

il. Calculate the energy signature using
Eq.(12) of all the 4 sub-images of both
the visual and thermal images as

$i8n,»Sh,»Sh, - Where y can be
either Vor I.
iil. Then calculate @ and b (note that
a+b=1):
ForLi, a= le and
é:L, + §L,
R 5)
é:Ll + §Ll
4
For D], a= i and
fDH é:Dn
S 26)
§D,, §DH
Vv
For D], a= % and
$p, T4,
_ Sb o)
é:Dlz é:Dnz
For D5, a= éD” and
éDu é:D]z
f[)13 (28)
é:Dlz é—’ZDu

Then using the parameters ‘e’ and ‘b’ and

Eqs.(21-24), we get wavelet coefficients of

the fused image.

iv. Then using the inverse wavelet transform
we get the fused image.

3.3 Fusion by maximizing Wavelet energy signature

using EBFS

From the above discussion, we know that the energy is
a prime factor for texture classification in the wavelet
domain. Hence, here we again consider the energy as
our cost function in E. coli Bacteria Foraging Strategy
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(EBFS). This procedure of fusion deviate much from
the earlier methods. For the fusion purpose, we have to
concentrate on the approximation coefficients
(Eq.(17)) only, not the detail coefficients (Egs.(18-
20)). For this reason we apply the EBFS optimization
technique on the approximation coefficients only for a
better result. In the above procedure (second method
described in section 3.2) ‘a’ and ‘b’ are computed
from Eq.(25) and ,thus, are fixed for all the
approximation coefficients of wavelet transformed
images. On the other hand, here we propose an
optimization approach where parameters ‘a’ and ‘b’
are independently decided for the approximation
coefficients. The approximation coefficients of the
fused image can mathematically be defined as :

LY (x,y)=alx,y)x L} +b(x,y)x L],

where a(x, y)+b(x,y) =1
(29)

But, for obtaining the other detail coefficients,
parameters ‘a’ and ‘b’ are decided as per the
previous method (second method given in
section 3.2) by using Eqs.(26-28) and the detail
coefficients for fused image can be computed by
using Eq.(22-24).
The algorithm for computing the optimal
parameters ‘e’ and ‘b’ for obtaining
approximation coefficients for the fused image
from the wavelet coefficients (approximation
coefficients) of visual and thermal images is
given below:
Algorithm

A. Decompose the given visual and thermal
images into 2-D wavelet transform
images to get four sub-images of same
size (one approximation image and rest
three detail images).
First take the approximation coefficients
of the visual and thermal images and
then do the following steps:
a) Calculate the dimension of the
approximation coefficients
asp=mxn, m is the
number of rows and # is the number
of columns of the approximation
coefficients.
Bacteria representation: For EBFS
optimization process, we have to

where

b)
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represent the bacterial search
dimension. Here the search
dimension is equal to p. This means
each coefficient represents itself as a
search parameter.

c) Cost function: For this problem, the
cost function is the maximization of
energy content of the fused
approximation  coefficients.  This
implies that after searching the visual
and thermal approximation space we

get the set of
a(x,y)and b(x, y) values, where
x=12,..,nandy =12,....m. The

Cost Function can be written as:

J =energy, .. (LiF )

= energy, ... (a(x, y)x L+ b(x, y)x L )

, (30)
where the a(x, y) and b(x, y) parameters

are obtained from the EBFS algorithm.
d) Then taking bacterial cost function

representation, use the Bacteria
Foraging Strategy Algorithm to get
optimal set of values
aopt (x7 y) and b()pt (x9 J/) .

e) Then compute the approximation
coefficients for the fused image by
using the Eq.(29).

C. Then consider the detail coefficients of
the thermal and visual images:
a) Determine the a and b parameters using
Egs.(26-28).
b) Then compute the detail coefficients
for the fused image using Eqgs.(22-24).
D. Then get the fused image out of the
given visual and thermal images by
evaluating the inverse  Wavelet
transform.

4 Experiments and Results

In this section, we discuss the images considered for
the experiments, parameters for EBFS optimization
technique and different results obtained from proposed
fusion schemes. Finally, we compare the results using
a gold standard.
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Images for experiments

We consider some face images from the Equinox
Database [16], which contain the visual and thermal
images of a person with many modalities. But, for our
experiment we only consider the LWIR (long-wave
IR) images.
Parameters for EBFS Algorithm

As (from previous sections) we know that the
search space p =mxn is too big, we use parameters

such that it avoids complexity of algorithm to some
extent. For this reason, we choose $=8, N_ =S8,

N,, =5, N, =3, N, =4, C(i) = 0.067,
daltract :0'01’ Waltract = 02’ hrepellent :0'01’ and
W, et = 10. However, the above parameters can be

changed to get better optimization. For example, if we
increase the NV, we get better optimization. Since the

search space is too large, we minimize the parameters.
If we increase the number of bacteria and other steps
involved, the computational complexity increases.
Here one can not vary the parameter C(7), which is

experimentally determined.

Yisual Image |

Yisual Image |
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Results

The results consist of fusion images, co-occurrence
matrix images, and performance comparison using
table format. We compare the quality of fused image
so formed using the Co-occurrence signature, Contrast
and Inverse Different Moment (IDM). The contrast
and IDM are already defined in section 2.1 and are
given as:

Contrast = inz{iiM(i, j)}, |i - j| =n
n=0
1

IDM = R
STl j)

M, )

The contrast and IDM are inversely proportional to
each other. When the contrast is more, the image has
greater information content.

The original images considered without histogram
equalization is shown in Figure 1. Fused images
obtained using proposed techniques are displayed in
Figure 2.

Thermal lrmage

Figure 1: Original images.

kethod 3.1.

W4T WI+T

W4T

hethod 3.2.

Method 3.3.

WI+T W+T

W4T

Figure 2: Fused images (VI-Visual Image I, VII-Visual Image II, T-Thermal Image).
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The corresponding co-occurrence matrix images of the
fused images (shown in Figure 2) are displayed in
Figure 3.

Rutuparna Panda, Manoj Kumar Naik

it more convincing. The results are compared in Table

1.

Table 1: Performance Comparison of proposed fusion

schemes.
Methad 3.1. Fusion of Visual | Fusion of Visual
; Image I and Image II and
Thermal Image | Thermal Image
(Contrast, IDM) | (Contrast, IDM)
Method 3.1. 108.63, 0.46563 | 77.722, 0.48502
Method 3.2. 126.21, 0.4303 96.924, 0.43845
Method 3.3. 142.81,0.41591 | 98.366, 0.43396
WI+T ViT From Table 1, we can see that fusion based on optimal
Method 3.2.

WI+T WI+T

hethod 3.3.

WI+T WI+T

Figure 3 : The Co-occurrence Matrix Images.

Then a performance evaluation has been carried out
using contrast and IDM as the gold standards to make
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wavelet energy signature using EBFS gives better
results. Further, the proposed method (Method 3.3)
gives us good tracking record of energy parameter of
fusion. This has been shown in Figure 4.

w10°

3.094

3.093

w w w
o w o o
] = fa] o
o o = =]

Energy as cost function

3.088

3.087

40 B0 80 100

ltiration of BF S Algorithrn
Figure 4: Cost Function of BFS Algorithm.

0 20 120

In the second experiment, we compare the results of
proposed fusion schemes applied to the histogram
equalize 1images. The images after histogram
equalization are considered for this experiment and are
shown in Figure 5.
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EIll ET

Figure 5: (E-Equalize, V-Visual, T-Thermal)

Table 2: Comparison of proposed fusion schemes using histogram equalized images.

Fusion of Equalize
Visual Image I and
Equalize Thermal
Image (Contrast,
IDM)

Fusion of Equalize
Visual Image II and
Equalize Thermal
Image (Contrast,
IDM)

Fusion of Equalize
Visual Image III and
Equalize Thermal
Image (Contrast,
IDM)

Method 3.1. 412.86, 0.28774 287.97,0.30159 186.3,0.31952
Method 3.2. 748.52,0.2264 479.63, 0.23495 293.54,0.24186
Method 3.3. 762.14,0.18659 498.77,0.19939 299.79,0.22311

The results are compared in Table 2. From Table 2, it
is observed that significant improvement can be
achieved by considering equalized images. So one can
equalize given visual and IR images before fusion.
From Table 2, we again see that the proposed EBFS
method (section 3.3) gives better results than other two
methods.

S Conclusions

In this paper, three new methods have been proposed
for fusion of the visual and IR images considering the
advantages and disadvantages of visual and thermal
images used for pattern recognition. Considering some
images from the Equinox Database for experiments,
results are compared. The contrast signature of GLCM
has been considered given the fact that it gives us
better means for performance evaluation. It has been
shown that the fusion by maximizing wavelet energy
signature using EBFS gives better results compared to
the other two proposed methods, which is quite
obvious. But, the EBFS method has some
disadvantage while considering time as the prime

E-ISSN: 2224-3488

factor. One has to choose EBFS parameters
judiciously in order to reduce computational
complexity. Finally, we conclude that the proposed
EBFS method can be used for information fusion for
different biometrics applications.
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